DMS: Distributed Sparse Tensor Factorization with Alternating Least Squares

نویسندگان

  • Shaden Smith
  • George Karypis
چکیده

Tensors are data structures indexed along three or more dimensions. Tensors have found increasing use in domains such as data mining and recommender systems where dimensions can have enormous length and are resultingly very sparse. The canonical polyadic decomposition (CPD) is a popular tensor factorization for discovering latent features and is most commonly found via the method of alternating least squares (CPD-ALS). Factoring large, sparse tensors is a computationally challenging task which can no longer be done in the memory of a typical workstation. State of the art methods for distributed memory systems have focused on distributing the tensor in a one-dimensional (1D) fashion that prohibitively requires the dense matrix factors to be fully replicated on each node. To that effect, we present DMS, a novel distributed CPD-ALS algorithm. DMS uses a 3D decomposition that avoids complete factor replication and communication. DMS has a hybrid MPI+OpenMP implementation that exploits multi-core architectures with a low memory footprint. We theoretically evaluate DMS against leading CPD-ALS methods and experimentally compare them across a variety of datasets. Our 3D decomposition reduces communication volume by 74% on average and is over 35x faster than state of the art MPI code on a tensor with 1.7 billion nonzeros.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DFacTo: Distributed Factorization of Tensors

We present a technique for significantly speeding up Alternating Least Squares (ALS) and Gradient Descent (GD), two widely used algorithms for tensor factorization. By exploiting properties of the Khatri-Rao product, we show how to efficiently address a computationally challenging sub-step of both algorithms. Our algorithm, DFacTo, only requires two sparse matrix-vector products and is easy to ...

متن کامل

A Medium-Grained Algorithm for Distributed Sparse Tensor Factorization

Modeling multi-way data can be accomplished using tensors, which are data structures indexed along three or more dimensions. Tensors are increasingly used to analyze extremely large and sparse multi-way datasets in life sciences, engineering, and business. The canonical polyadic decomposition (CPD) is a popular tensor factorization for discovering latent features and is most commonly found via ...

متن کامل

Regularized Alternating Least Squares Algorithms for Non-negative Matrix/Tensor Factorization

Nonnegative Matrix and Tensor Factorization (NMF/NTF) and Sparse Component Analysis (SCA) have already found many potential applications, especially in multi-way Blind Source Separation (BSS), multi-dimensional data analysis, model reduction and sparse signal/image representations. In this paper we propose a family of the modified Regularized Alternating Least Squares (RALS) algorithms for NMF/...

متن کامل

A Projected Alternating Least square Approach for Computation of Nonnegative Matrix Factorization

Nonnegative matrix factorization (NMF) is a common method in data mining that have been used in different applications as a dimension reduction, classification or clustering method. Methods in alternating least square (ALS) approach usually used to solve this non-convex minimization problem.  At each step of ALS algorithms two convex least square problems should be solved, which causes high com...

متن کامل

Nesterov-based Alternating Optimization for Nonnegative Tensor Factorization: Algorithm and Parallel Implementations

We consider the problem of nonnegative tensor factorization. Our aim is to derive an efficient algorithm that is also suitable for parallel implementation. We adopt the alternating optimization (AO) framework and solve each matrix nonnegative least-squares problem via a Nesterov-type algorithm for strongly convex problems. We describe two parallel implementations of the algorithm, with and with...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015